Currently viewing the tag: "harry markowitz"

We left off last time showing how the Security Characteristic Line indicates the beta of an asset under Harry Markowitz’s Modern Portfolio Theory (MPT). We are now ready to discuss asset pricing models, and we’ll begin by documenting the Capital Asset Pricing Model (CAPM).   This model was developed in the 1960’s by several independent researchers, including Sharpe, Treynor, Lintner and Mossin, building on Markowitz’s previous work.

CAPM is an equation that indicates the required rate of return (ROR) one should demand for holding a risky asset as part of a diversified portfolio, based on the asset’s beta.   If CAPM indicates a rate of return that is different from that predicted using other criteria (such as P/E ratios or stock charts), then one should, in theory, buy or sell the asset depending on the relationship of the different estimates.  For instance, if stock charting indicates that the ROR on Asset A should be 13% but CAPM estimates only a 9% ROR, one should sell or short the asset, which cumulatively should drive the price of Asset A down. Continue reading “Capital Asset Pricing Model, Part One – Normal Distribution” »

Our risk/return series continues with a review of Modern Portfolio Theory (MPT). We’ve already looked at alpha, beta, efficient markets, and returns.  Our ultimate goal is to evaluate the role of alpha in hedge fund profitability, how to replicate hedge fund results without needing alpha, and finally how you can start your own cutting-edge hedge fund using beta-only replication techniques.

MPT suggests that a portfolio can be optimized in terms of risk and return by carefully mixing individual investments that have widely differing betas. Recall that beta is return due to correlation with an overall market (known as systematic risk). To take a trivial example, if you hold equal long and short positions in the S&P 500 index, your portfolio would have an overall beta of (.5 * 1 + .5 * -1) = 0.  There would be no risk, but in this case, there would be no return either, except for the slow drain of commissions, fees, etc.

Continue reading “Modern Portfolio Theory – Part One” »